Home
Class 12
MATHS
Evaluate int(xsin^-1x)/sqrt (1-x^2)dx...

Evaluate `int(xsin^-1x)/sqrt (1-x^2)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx \), we can use substitution and integration by parts. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we have: \[ x = \sin t \] Differentiating both sides gives: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(xcos^-1x)/sqrt (1-x^2)dx

Evaluate: inte^(sin^-1x)/sqrt (1-x^2)dx

int(xsin^(-1)x^(2))/(sqrt(1-x^(4)))dx

Evaluate: int(x-1)/sqrt (x^2-1)dx

Evaluate the following integrals: int(xsin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int(x+1)/sqrt (1+x^2)dx

Evaluate: int(x-1)sqrt (x^2-2x)dx

Evaluate: int(x-1)sqrt(1+x+x^(2)) dx

Evaluate: int(x-1)/(sqrt(x^2+1))\ dx