Home
Class 12
MATHS
intsec^2x/sqrt (tan^2x+4)dx...

`intsec^2x/sqrt (tan^2x+4)dx`

Text Solution

Verified by Experts

Since derivative of `tanx ` is `sec^(2)x.`
Let `tanx=t` or `sec^(2)x dx=dt`
`:. int(sec^(2)x)/(sqrt(tan^(2)x+4))dx=int(dt)/(sqrt(t^(2)+2^(2)))`
`=log|t+sqrt(t^(2)+4)|+C`
`=log|tanx+sqrt(tan^(2)x+4)|+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int sec^2x/sqrt(tan^2x-4)dx

Evaluate: intsec^2x/sqrt (1-tan^2x)dx

Evaluate: intsec^2x/sqrt (1+tanx)dx

int(sec^(2)x)/(sqrt(tan^(2)x+2tan x+10))dx xx

Evaluate : (i) int(sinx)/(sqrt(4cos^(2)x-1))dx (ii) int(sec^(2)x)/(sqrt(tan^(2)x-4))dx

Integrate : int(sec^(2)x)/(sqrt(tan^(2)x+4))dx

Evaluate: int(sec^(2)x)/(sqrt(tan^(2)x+4))dx

int(sec^(2)x)/(sqrt(1-tan^(2)x))dx=?

int sec^(2)x sqrt(tan^(2) x+tan x-7)dx

Evaluate: int(sec^(2)x)/(sqrt(4+tan^(2)x))dx