Home
Class 12
MATHS
int0^pi (xtanx)/(secx+tanx)dx...

`int_0^pi (xtanx)/(secx+tanx)dx`

A

`(pi^(2))/4`

B

`(pi^(2))/2`

C

`(3pi^(2))/2`

D

`(pi^(2))/3`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_0^\pi \frac{x \tan x}{\sec x + \tan x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the integrand: \[ \frac{x \tan x}{\sec x + \tan x} \] We know that: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^pi(xtanx)/(s e c x+tanx)dx

int(tanx)/(secx+tanx)dx=

Evaluate the following: int_0^pi (xtanx)/(secxcosecx)dx

int_0^pi tanx/(sinx+tanx)dx

(i) int (tanx)/((secx + tanx))dx ,(ii) int(cosecx)/((cosecx- cotx))dx

int_(0)^(pi)(x tanx)/(secx+cosx)dx is

int(1)/(secx+tanx)dx=

intsecx/(secx+tanx)dx

Evaluate int(tanx)/(secx+tanx)dx