Home
Class 12
MATHS
Prove that int0^1 tan^-1((2x-1)/(1+x-x^2...

Prove that `int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_0^1tan^-1.(1/(1-x+x^2))dx=2int_0^1tan^-1xdx

Prove that int_(0)^(1)tan^(-1)((1)/(1-x+x^(2)))dx=2int_(0)^(1)tan^(-1)xdx. Hence or otherwise,evaluate the integral int tan^(-1)(1-x+x^(2))dx

int_0^1 tan^(-1)((1)/(x^(2)-x+1))dx

int_(0)^(1)Tan^(-1)((2x)/(1-x^(2)))dx=

STATEMENT 1: The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx=0 STATEMENT 2:int_(a)^(b)f(x)dx=int_(0)^(b)f(a+b-x)dx

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

Evaluate the following integral: int_0^1tan^(-1)((2x)/(1-x^2))dx

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is 1 b. -1 c. 0 d. pi//4