Home
Class 12
MATHS
2x y(dy)/(dx)=x^2+y^2...

`2x y(dy)/(dx)=x^2+y^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(2x+y)(dy)/(dx)=x+2y=

x(dy)/(dx)-y=2x^(2)y

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^(2)+2y^(2)+(y^(4))/(x^(2))

The solution of the differential equation 2x^(2)y(dy)/(dx)=tan(x^(2)y^(2))-2xy^(2), given y(1)=(pi)/(2), is

The first integral of (dy)/(dx)((d^(2)y)/(dx^(2)))-x^(2)y((dy)/(dx))=xy^(2) will be

x+y(dy)/(dx)=sec(x^(2)+y^(2)), where x^(2)+y^(2)=u

Solution of the differential equation (x+y(dy)/(dx))/(y-x(dy)/(dx))=(x sin^(2)(x^(2)+y^(2)))/(y^(3))

Solution of differential equation y-x(dy)/(dx)=y^(2)+(dy)/(dx), when x=1,y=2, is

x(dy)/(dx)-y=2sqrt(y^(2)-x^(2))