Home
Class 12
MATHS
Solve: (d^2y)/dx^2=e^x(sinx+cosx), given...

Solve: `(d^2y)/dx^2=e^x(sinx+cosx)`, given that `y=1` and `(dy)/(dx)=0`, when `x=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (d^2y)/dx^2=x+sinx , given that y=0 and (dy)/(dx)=-1 when x=0

Solve the following differential equation: (d^2y)/dx^2=e^x+cosx , given that (dy)/(dx)=1=y , when x=0

Solve: (d^2y)/dx^2=logx , given that y=1 and (dy)/(dx)=-1 when x=1

Solve: (dy)/(dx)+2y=e^(-x)

Solve the differential equation: (d^2y)/dx^2=x^2+sin3x , given that (dy)/(dx)=1=y , when x=0

Solve: (dy)/(dx)+y=cosx-sinx

(d^(2)y)/(dx^(2))=x^(2)sin x, givenatx =0 if y=0,(dy)/(dx)=1

Solve the differential equation x(d^2y)/dx^2=1 , given that y=1, (dy)/(dx)=0 when x=1

Solve the differential equation (d^(2)y)/(dx^(2))=log|x| given that y=1,(dy)/(dx)=-1, when x=1

Solve: (dy)/(dx)=e^(x-y)+x^2e^(-y)