Home
Class 12
MATHS
Find the value of int((x^m-1)dx)/(x^(m+1...

Find the value of `int((x^m-1)dx)/(x^(m+1)sqrt(1-2x^m+mx^(2m)))` (A) `sqrt(m+2/x^m+1/x^(2m)+c)` (B) `sqrt(m-2/x^m+1/x^(2m)+c)` (C) `sqrt(m-2/x^m-1/x^(2m)+c)` (D) `sqrt(m+2/x^m-1/x^(2m)+c)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of y is (x-sqrt(x^(2)-1))^(m)

find the value of m,(sqrt(m+1)+sqrt(m-1))/(sqrt(m+1)-sqrt(m-1))=2m-(1)/(2)

Evaluate: int((m)/(x)+(x)/(m)+m^(x)+x^(m)+mx)dx( ii) int(sqrt(x)-(1)/(sqrt(x)))^(2)dx

int(x^(7m)+x^(2m)+x^(m))(2x^(6m)+7x^(m)+14)^((1)/(m))dx

If int(sqrt(1-x^(2)))/(x^(4))dx=A(x)*(sqrt(1-x^(2)))^(m) where A(x) is a function of x then (A(x))^(m)= (A) -(1)/(27x^(9))(B)(1)/((27x)^(9))(C)(1)/(3x^(9))(D)-(1)/(3x^(9))

Evaluate: for m in Nint x^(3m)+x^(2n)+x^(m))(2x^(2m)+3x^(m)+6)^((1)/(m))dx,x>

If int(dx)/(sqrt(x)(1+x))=m tan^(-1)(x^(n)), prove that m*n=1

If I(m)=int_(0)^( pi)ln(1-2m cos x+m^(2))dx then I(1)=

lim_(x->0) [(2^m +x)^(1/m)-(2^m+x)^(1/n)]/x a) 1/(m2^m)-1/(n2^n) b) 1/(m2^(m-1))-1/(n2^(n-1)) c) m/2^(m-1)-n/2^(n-1) d) none of these

For any natural number m, evaulate, int(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^m+6)^(1//m)dx, x gt0