Home
Class 12
MATHS
intlog(x+sqrt(1+x^2))/sqrt(1+x^2)dx...

`intlog(x+sqrt(1+x^2))/sqrt(1+x^2)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

intlog(x+sqrt(a^2+x^2))dx

intlog(1-sqrt(x))dx=

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(2))sqrt(1+x^(2)))dx=

If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -1 < x < 1, x!= 0 . Find dy/dx .

Integrate : (a) int (sqrt(1-x^2) + sqrt(1+x^2) )/( sqrt(1-x^4) dx,

If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2))))dx=a sqrt(1+x^(2))ln(x+sqrt(1+x^(2)))+bx

int(2+sqrt(x))/((x+sqrt(x)+1)^(2))dx