Home
Class 12
MATHS
inte^(-x)log(e^x+1)dx...

`inte^(-x)log(e^x+1)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int e^(-x)log(e^(x)+1)dx, then equal

int e^(x log e^(a))dx

" (2) "int e^(x log e)dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Evaluate: int(x+1)e^(x)log(xe^(x))dx

int(e^(log x))/(x)dx=

Evaluate: int e^(x)(log x+(1)/(x))dx

int_(1)^(x)log_(e)[x]dx

Evaluate: int e^(x)(log x+(1)/(x^(2)))dx

int e^(-log x)dx=