Home
Class 12
MATHS
The value of the integral intx/(1+xtanx)...

The value of the integral `intx/(1+xtanx)dx` is equal to (A) `log|xcosx+sinx|+c` (B) `log|cosx+x|` (C) `log|cosx+xsinx|+c` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin5x)/(cos7xcos2x)dx is equal to (A) log|sec7x|+c (B) log|sec7xsec2x|+c (C) log|sec7x+sec2x|+c (D) none of these

intx^(3)log x dx is equal to

int(xsinx+cosx)/(xcosx)dx is equal to

intx^(sinx) ((sinx)/x+cosxdotlogx) dx is equal to (A) x^(sinx)+C (B) x^(sinx)cosx+C (C) ((x^(sinx))^2)/2+C (D) none of these

int(cosx+sinx)/sqrt(sin2x)dx= (A) sin^-1(cosx+sinx) (B) sin^-1(sinx-cosx) (C) cos^-1(cosx+sinx) (D) none of these

The value of the integral int_(-pi//2)^(pi//2) (x^(2)+ln'(pi+x)/(x-a)) cosx dx is

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

Choose the correct answers int(cos2x)/((sinx+cosx)^2)dx is equal (A) (-1)/(sinx+cosx)+C (B) log|sinx+cosx|+C C) log|sinx-cosx|+C (D) 1/((sinx+cosx)^2)

If the integral int(5tanx)/(tanx-2)dx = x+a"ln"|sinx-2cosx|+k , then a is equal to:

The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the constant of integration)