Home
Class 12
MATHS
The value of the integral int(e^(5logx)-...

The value of the integral `int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx` is equal to (A) `x^2+c` (B) `x^3/3+c` (C) `x^2/2+c` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

Evaluate : int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx .

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

e^(x+2logx)

int(logx)/(x(1+logx)(2+logx))dx=

int32x^(3)(logx)^(2) dx is equal ot

The integral int_(2)(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is equal to

The value of the integral int_(1//e)^(e) |logx|dx , is