Home
Class 12
MATHS
The value of int(f(x)phi\'(x)+phi(x)f\'(...

The value of `int(f(x)phi\'(x)+phi(x)f\'(x))/((f(x)*phi(x)+1)sqrt(phi(x)*f(x)-1))dx` is (A) `cos^-1sqrt(f(x)^2-phi(x)^2)` (B) `tan^-1[f(x)phi(x)]` (C) `sin^-1sqrt(f(x)/(phi(x))` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int({f(x)phi'(x)-f'(x)phi(x)})/(f(x)phi(x)){ ln phi(x)-lnf(x)}dx is equal to

int[f(x).phi'(x)-f'(x).phi(x)]/[f(x).phi(x)]{logphi(x)-logf(x)}.dx is equal to

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

int_(a)^(b)f(x)dx=phi(b)-phi(a)

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

phi(x)=f(x)*g(x)" and f'(x)*g'(x)=k ,then (2k)/(f(x)*g(x))=

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is