Home
Class 12
MATHS
int1/(cos^6x+sin^6x)dx is equal to (A) t...

`int1/(cos^6x+sin^6x)dx` is equal to (A) `tan^-1(tanx-cotx)+c` (B) `sin^-1(sin2x)+c` (C) `tan^-1(tanx+cotx)+c` (D) `cot^-1(tanx+cotx)+c`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos4x-1)/(cotx-tanx)dx is equal to

int(sin^2x-cos^2x)/(sin^2cos^2x)dx is equal to (A) tanx+cotx+c (B) tanx+cose c""x+c (C) -tanx+cot""x+c (D) tanx+sec""x+c

l=int(cos^(4)x+1)/(cotx-tanx)dx is equal to

(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=

int(1)/(tanx+cotx)dx=

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

2tanx-cotx+1=0

int(dx)/(sin^2xcos^2x) equals (A) tanx+cotx+C (B) tanx-cotx+C (C) tanxcotx+C (D) tanx-cot2x+C

The value of (cotx-tanx)/(cot2x) is

The value of the integral int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is (A) sin x-6tan^(-1)(sin x)+C(B)sin x-2(sin x)^(-1)+C(C)sin x-2(sin x)^(-1)+6tan^(-1)(sin x)+C(D)sin x-2(sin x)^(-1)+5tan^(-1)(sin x)+C