Home
Class 12
MATHS
int(f(x)*g\'(x)-f\'(x)g(x))/(f(x)*g(x))*...

`int(f(x)*g\'(x)-f\'(x)g(x))/(f(x)*g(x))*{logg(x)-logf(x)}dx=` (A) `log (g(x)/f(x))+c` (B) `log (f(x)/g(x))+c` (C) `1/2log (g(x)/f(x))^2+c` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

int_( is )((f(x)g'(x)-f'(x)g(x))/(f(x)g(x)))*(log(g(x))-log(f(x))dx

int(f(x)g'(x)+g(x)f'(x))/(f(x)g(x))[logf(x)+logg(x)]dx=

int{f(x)g'(x)-f'g(x)}dx equals

int(f'(x))/(f(x))dx=log f(x)+c

int x{f(x^(2))g'(x^(2))-f'(x^(2))g(x^(2))}dx

If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+Ax+C then (a)f(x)=(1)/(2)x^(2)(b)g(x)=log x(c)A=1(d) none of these

f(x+1)=xf(x),g(x)=ln(f(x)) find abs(g''(5)-g''(1)) :