Home
Class 12
MATHS
intdx/((x-1)^(3/4)(x+2)^(5/4))= (A) 4/3(...

`intdx/((x-1)^(3/4)(x+2)^(5/4))=` (A) `4/3((x-1)/(x+2))^(1/4)+c` (B) `4/3sqrt((x-1)/(x+2))+c` (C) `4/3((x+2)/(x-1))^(1/4)+c` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

intdx/(x^2(x^4+1)^(3/4)

intdx/(sqrt(x)(1+x^2)^(5/4))= (A) (2x)/(1+x^2)^(1/4)+c (B) (2sqrt(x))/(1+x^2)^(1/4)+c (C) (2sqrt(x))/(1+x^2)+c (D) none of these

int(dx)/((x+1)^((3)/(4))(x-2)^((5)/(4))) equal to (A) 4((x+1)/(x-2))^((1)/(4))(B)-(4)/(3)((x+1)/(x-2))^((1)/(4))(C)4((x-1)/(x-2))^((1)/(4))(D)(4)/(3)((x+1)/(x-2))^((1)/(4))

int(x-x^(31/3))/(x^(4))dx=-(a)/(b)((1)/(x^(2))-1)^(4/3)+c,then b=

None of these int(2x)/((1-x^(2))sqrt(x^(4)-1))dx is equal to :( A) sqrt((x^(2)-1)/(x^(2)+1))+c(B)sqrt((x^(2)+1)/(x^(2)-1))(C)sqrt(x^(4)+1)(D) None of these

If int(dx)/(x^(2)(x^(4)+1)^(3//4))=A((x^(4)+1)/(x^(4)))^(B)+c, then

int(x^(4)-1)/(x^(2)sqrt(x^(2)+x^(2)+1))dx=sqrt(x^(2)+(1)/(x^(2))+1)+C(sqrt(x^(2)+x^(2)+1))/(x^(2))+C(sqrt(x^(4)+x^(2)+1))/(x)+C(d) none of these

If (x^(4)+(1)/(x^(4)))=322, the value of (x-(1)/(x)) is (a) 4(b)3sqrt(2)(c)6(d)8

(if^(4)-3x+3)/((x-1)^(3))=Ax+B+(C)/(x-1)+(D)/((x-1)^(2))+(E)/((x-1)^(3)) then

Integral of the form int[xf\'(x)+f(x)]dx can be evaluated by using integration by parts in first integral and leaving second integral as it is.Now answer the question: int[1/(x^4+1)-(4x^4)/(x^4+1)^2]dx= (A) x^2/(x^4+1)+c (B) x^3/(x^4+1)+c (C) x/(x^4+1)+c (D) none of these