Home
Class 12
MATHS
intdx/(x(1+x^10))= (A) 1/10 log((1+x^10)...

`intdx/(x(1+x^10))=` (A) `1/10 log((1+x^10)/x^10)+c` (B) `1/10 log(x^10/(1+x^10))+c` (C) `1/(1+x^10)^2+c` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(3)+(1)/(x^(3))=110, then x+(1)/(x)=5 (b) 10 (c) 15 (d) none of these

If (x-1)/(x)=3, then the value of 1+(1)/(x^(2)) is (a) 9(b) 10(c)11 (d) None of these

x^((log_(10)x+7)/(4))=10^(log_(10)x+1)

int(10x^(9)+10x^(x)log_(e^(10))dx)/(x^(10)+10^(x)) equals (A) 10^(x)-x^(10)+C (B) ( C) log(10^(x)+x^(10))+C

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is A). (1)/(2)log_(10)((1+x)/(1-x)) , B). log_(10)(2-x) , C). (1)/(2)log_(10)(2-1) , D). (1)/(4)log_(10)((2x)/(2-x))

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

140*x^(1)+log x=10x

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1