Home
Class 12
MATHS
int(x+sinx)/(1+cosx)dx= (A) xtan(x/2)+c ...

`int(x+sinx)/(1+cosx)dx=` (A) `xtan(x/2)+c` (B) `log(1-cosx)+c` (C) `(tan(x/2))/2+c` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(xcosxlogx-sinx)/(x(logx)^2)dx is equal to (A) sinx+c (B) logxsinx+c (C) logx+sinx+c (D) none of these

int(cosx+sinx)/sqrt(sin2x)dx= (A) sin^-1(cosx+sinx) (B) sin^-1(sinx-cosx) (C) cos^-1(cosx+sinx) (D) none of these

The value of int((1+logx))/sqrt((x^x)^2-1)dx is (A) sec^-1(x^x)+c (B) tan^-1(x^x)+c (C) log(x+sqrt((x^x)^2-1))+c (D) none of these

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

intx^(sinx) ((sinx)/x+cosxdotlogx) dx is equal to (A) x^(sinx)+C (B) x^(sinx)cosx+C (C) ((x^(sinx))^2)/2+C (D) none of these

int(log(1+cosx)-xtan((x)/(2)))dx=

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

The value of the integral intx/(1+xtanx)dx is equal to (A) log|xcosx+sinx|+c (B) log|cosx+x| (C) log|cosx+xsinx|+c (D) none of these

If int(sinx)/(cosx(1+cosx))dx=f(x)+C , then f(x) is equal to

int(sin^(2)x)/(cos^(4)x)dx=(1)/(3)tan^(2)x+C(b)(1)/(2)tan^(2)x+C(c)(1)/(3)tan^(3)x+C(d) none