Home
Class 12
MATHS
If intf(x)*cosxdx=1/2{f(x)}^2+c, then f(...

If `intf(x)*cosxdx=1/2{f(x)}^2+c`, then `f(0)=` (A) `1` (B) `0` (C) `-1` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If a (A) x=0 (B) x=1 (C) x=2 (D) None of these.

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

If the two roots of the equation (c-1)(x^2+x+1)^2-(c+1)(x^4+x^2+1)=0 and real and distinct and f(x)=(1-x)/(1+x) then f(f(x))+f(f(1/x))= (A) -c (B) c (C) 2c (D) none of these

If intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^(2)+c, then f(x) can be

Let f(x)=max. {2-x,2,1+x} then int_(-1)^1 f(x)dx= (A) 0 (B) 2 (C) 9/2 (D) none of these

If intf(x)sec^(2)xdx=(1)/(2)[f(x)]^(2)+c, then : f(x) can be