Home
Class 12
MATHS
Let n be a positive integer such that In...

Let `n` be a positive integer such that `I_n=intx^nsqrt(a^2-x^2)dx` Now answer the following question: The value of `I_1` is (A) `2/3(a^2-x^2)^(1/2)` (B) `1/3(a^2-x^2)^(3/2)` (C) `-2/3(a^2-x^2)^(3/2)` (D) `-1/3(a^2-x^2)^(3/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let n be a positive integer, such that (1 + x + x^2)^n=a_0 +a_1x+ a_2 x^2+a_3 x^3+......a_(2n) x^(2n), Answer the following question: The value of a when (0 leq r leq n) is (A) a_(2n-r) (B) a_(n-r) (C) a_(2n) (D) n. a_(2n-1)

intx^3/(1+x^2)^2dx

intx/(x^2+2)^(1/3)dx

The anti derivative of (sqrt(x)+1/(sqrt(x))) equals (A) 1/3x^(1/3)+2x^(1/2)+C (B) 2/3x^(2/3)+1/2x^2+C (C) 2/3x^(3/2)+2x^(1/2)+C (D) 3/2x^(3/2)+1/2x^(1/2)+C

The value of I=int_(-sqrt(3)/2)^(sqrt(3)/2)(dx)/((1-x)sqrt(1-x^(2))) is

The value of lim_(xrarr oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n)) is

Find the term independent of x in the expansion of : (i) (2x+1/(3x^(2)))^(9) (ii) ((3x^(2))/2-1/(3x))^(6) (iii) (x-1/x^(2))^(3n) (iv) (3x-2/x^(2))^(15)

int(dx)/(sqrt(x)+sqrt(x-2))= , (A) (1)/(3)[x^(3/2)-(x-2)^(3/2)]+c , (B) (2)/(3)[x^(3/2)-(x-2)^(3/2)]+c , (C) (1)/(3)[(x-2)^(3/2)-x^(3/2)]+c , (D) (2)/(3)[(x-2)^(3/2)-x^(3/2)]+c

(i) int(2x+3)(x^(2)+3x-1)^(1/2)dx