Home
Class 12
MATHS
int0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx i...

`int_0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=int_(0)^( pi)(sin x)/(x^(2))dx, then int_(0)^((pi)/(2))(cos(2x))/(x)dx, is equal to:

int_(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

int(x^(2))/((xsin x+cosx)^(2))dx is equal to

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

int_(0)^(pi)|1+2cosx| dx is equal to :