Home
Class 12
MATHS
Show that: inta^bf(x)dx=int(a+c)^(b+c)f(...

Show that: `int_a^bf(x)dx=int_(a+c)^(b+c)f(x-c)dx` and hence show that `int_0^pi sin^100xcos^99xdx=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a + c)^(b+c) f(x)dx=

int_0^(pi/2) sin^2xcos^2xdx

int_0^(pi/2) sin^2xcos^3xdx

Show that int_(0)^( pi) co s^(99) x dx =0

int_(0)^(pi)sin^(2)xcos^(3)xdx=0

int_(0)^(pi)(sin2xcos3x)dx=?

int_(0)^( pi/2)sin^2xcos xdx

int_0^pi xcos^2xdx

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a