Home
Class 12
MATHS
Let f be a non-negative function defined...

Let `f` be a non-negative function defined on the interval `[0,1]`. If `int_0^xsqrt(1-(f\'(t))^2)dt=int_0^xf(t)dt, 0lexle1` and `f(0)=0`, then (A) `f(1/2)lt1/2` and `f(1/3)gt1/3` (B) `f(1/2)gt1/2` and `f(1/3)gt1/3` (C) `f(1/2)lt1/2` and `f(1/3)lt1/3` (D) `f(1/2)gt1/2` and `f(1/3)lt1/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a non-negative function defined on the interval .[0,1].If int_0^x sqrt[1-(f'(t))^2].dt=int_0^x f(t).dt, 0<=x<=1 and f(0)=0,then

Let f be a non-negative function defined on the interval [0,1]dot If int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n df(0)=0,t h e n (A)f(1/2) 1/3 (B)f(1/2)>1/2a n df(1/3)>1/3 (C)f(1/2) 1/2a n df(1/3)<1/3

Let f be a non-negative function in [0, 1] and twice differentiate in (0, 1). If int_0^x sqrt(1-(f'(t))^(2))dt=int_0^x f(t)dt , 0 lexle1 and f(0)=0 then the value of lim_(x to0)int_0^xf(t)/x^2 dt is

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2) , then