Home
Class 12
MATHS
Let f be the function defined on [-pi,pi...

Let `f` be the function defined on `[-pi,pi]` given by `f(0)=9` and `f(x)=sin((9x)/2)/sin(x/2)` for `x!=0`. The value of `2/pi int_-pi^pif(x)dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of integral int _(0)^(pi) x f (sin x ) dx is

If f(x)=x+sin x, then find the value of int_(pi)^(2 pi)f^(-1)(x)dx

Let the function f(x) = sin x + cos x , be defined in [0, 2pi] , then f(x)

If f(x)=cos ec(x-(pi)/(3))cos ec(x-(pi)/(6)) then the value of int_(0)^((pi)/(2))f(x)dx is

If f(x)=int(sinx)/(cos^(2)x)(1-3sin^(3)x)dx , then value of (f(0)-f(pi)+(9pi)/2) is

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be:

int_(-pi)^( pi)(sin[(9x)/(2)])/(sin[(x)/(2)])*dx

int_(-pi/2)^(pi/2)sin^(9) x dx