Home
Class 12
MATHS
If n is a positive integer, prove that: ...

If `n` is a positive integer, prove that: `int_0^(2pi) (cos(n-1)x-cosnx)/(1-cosx)dx=2pi`, hence or otherwise, show that `int_0^(2pi) (sin((nx)/2)/sin(x/2))^2dx=2npi`.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

int_0^(2pi)(sin2x)dx

int_0^(2pi)(sin2x)dx

int_(0)^(pi//2) (cosx )/ (1+sin^(2)x)dx=

int_0^(pi/2) sin x sin 2x dx

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

int_(0)^(pi//2)(cosx)/((1+sin^(2)x))dx=?

int_(0)^(2pi)sqrt(1+"sin"x/2)dx=

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

int_(0)^( pi/2)(cosx)/(1+sin x)dx