Home
Class 12
MATHS
Evaluate: int-100^100 Sgn(x-[x])dx, wher...

Evaluate: `int_-100^100 Sgn(x-[x])dx`, where `[x]` denotes the integral part of `x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: int_0^[x] (x-[x])dx=[x]/2 , where [x] denotes the integral part of x .

int_(-1)^(10)sgn(x-[x])dx=

Evaluate int_(0)^(100)2^(x-[x])dx

Show that: int_0^x[x]dx=[x]([x]-1)/2+[x](x-[x]) , where [x] denotes the integral part of x .

int_(-1)^(3)sgn(x-[x])dx

Find int_(-1)^(10)sgn(x-[x])dx

int_(-2)^(4) f[x]dx , where [x] is integral part of x.

Evaluate int _(-1) ^(15) Sgn ({x})dx, (where {**} denotes the fractional part function)

int_(0)^(2)[x-1]dx= Where [x] denotes the