Home
Class 12
MATHS
Evaluate: int0^pi log(1+cosx)dx...

Evaluate: `int_0^pi log(1+cosx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^{\pi} \log(1 + \cos x) \, dx \), we can use a property of definite integrals. Let's go through the steps systematically. ### Step 1: Use the property of definite integrals We know that: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] For our integral, we have \( a = \pi \) and \( f(x) = \log(1 + \cos x) \). Thus, we can write: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^pilog(1+cosx)dx

Evaluate: int_0^pi1/(1+e^(cosx))dx

Evaluate int_0^(pi/2)sinx.log cosx dx

Evaluate int_0^(pi/2)cosx/(1+cosx+sinx)dx

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

Evaluate: int_0^(200pi)sqrt(1+cosx\ )"dx"

Evaluate : int_(0)^(pi//2)(cosx)/((3cosx+sinx))dx .

Evaluate: int_0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

Evaluate: int_0^(pi//4)"log"(1+"t a n x")dx

Evaluate int_0^(pi/2) sqrt(cosx)/(sqrt(cosx)+sqrt(sinx))dx