Home
Class 12
MATHS
If int0^1e^t/(t+1) dt=a, then int(b-1)^b...

If `int_0^1e^t/(t+1) dt=a`, then `int_(b-1)^b e^(-t)/(t-b-1) dt`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=

If rArr int_(0)^(1) (e^(-t))/(t+1) dt =a, "then"int_(b-1)^(b) (e^(-1))/(t-b-1)dt is equal to

Let A = int_(0)^(1)(e^(t))/(1+t) dt , then int_(a-1)^(a)(e^(-1))/(t-a-1) dt has the value :

If int_(0)^(1)(e^(t)dt)/(t+1)=a, then evaluate int_(b-1)^(b)(e^(t)dt)/(t-b-1)

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

int_e^(e(-1)) 1/(t(t+1)) dt

if int(e^(t)dt)/(1+t)=a then int e^(t)(dt)/((1+t)^(2))=

If lambda=int_(0)^(1)(e^(t))/(1+t), then int_(0)^(1)e^(t)log_(e)(1+t)dt is equal to