Home
Class 12
MATHS
If l1=inte^(e^2) dx/logx and l2=int1^2 e...

If `l_1=int_e^(e^2) dx/logx` and `l_2=int_1^2 e^x/xdx`, then (A) `l_1=2l_2` (B) `l_1+l_2=0` (C) `2l_1=l_2` (D) `l_1=l_2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If l_(1)=int sin^(-1)x dx and l_(2) =int sin^(-1)sqrt(1-x^(2))dx , then

Two lines with direction cosines l_1,m_1,n_1 and l_2,m_2,n_2 are at righat angles iff (A) l_1l_2+m_1m_2+n_1n_2=0 (B) l_1=l_2,m_1=m_2,n_1=n_2 (C) l_1/l_2=m_1/m_2=n_1/n_2 (D) l_1l_2=m_1m_2=n_1n_2

Let L_1 be the length of the common chord of the curves x^2 + y^2=9 and y^2= 8x, and L_2 be the length of the latus rectum of y^2=8x, then: (A) L_1 lt L_2 (B) L_1/L_2=sqrt2 (C) L_1gtL_2 (D) L_1=L_2

If l_1=int_1^x x sin x.e^sin dx and l_2=int_0^(pi/2) cos x.e^sin dx, then the value of [I_1/I_2] is (where [.] denotes greatest integer function)

The direction ratios of the bisector of the angle between the lines whose direction cosines are l_1,m_1,n_1 and l_2,m_2,n_2 are (A) l_1+l_2,m_1+m_2+n_1+n_2 (B) l_1-l_2,m_1-m_2-n_1-n_2 (C) l_1m_2-l_2m_1,m_1n_2-m_2n_1,n_1l_2-n_2l_1 (D) l_1m_2+l_2m_1,m_1n_2+m_2n_1,n_1l_2+n_2l_1

If l=int_(0)^(pi//2)(cosx)/(1+sin^(2)x)dx , then (4)/(pi)l is _______.

Let l_(1)=int_(0)^(1)(e^(x))/(1+x)dx and l_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx. "Then"(l_(1))/(l_(2)) is equal to