Home
Class 12
MATHS
If f(x)=ae^(2x)+be^x+cx satisfies the co...

If `f(x)=ae^(2x)+be^x+cx` satisfies the conditions `f(0)=-1, f\'log(2)=28, int_0^(log4) [f(x)-cx]dx=39/2`, then (A) `a=5, b=6, c=3` (B) `a=5, b=-6, c=0` (C) `a=-5, b=6, c=3` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then

Let f(x)=ae^(2x)+be^x+cx , where f(0)=-1, f'(log_e2)=21 and int_0^(log_e4)(f(x)-cx)dx=39/2 then the value of abs(a+b+c) is__________

If f(x) and g(x) be continuous functions in [0,a] such that f(x)=f(a-x),g(x)+g(a-x)=2 and int_0^a f(x)dx=k , then int_0^a f(x)g(x)dx= (A) 0 (B) k (C) 2k (D) none of these

The polynomial f(x)=x^3-bx^2+cx-4 satisfies the conditions of Rolle's theorem for x in [1,2] , f'(4/3) = 0 the order pair (b,c) is

If f(x) = a + bx + cx^2 where a, b, c in R then int_o ^1 f(x)dx

If f(x) satisfies the condition of Rollel's theorem in [1,2], then int_(1)^(2)f'(x)dx is equal to (a) 1 (b) 3 (c) 0 (d) none of these

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)= (A) 1 (B) 0 (C) -1 (D) none of these

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these