Home
Class 12
MATHS
If In=int(pi/4)^(pi/2) (tanx)^-n dx(ngt1...

If `I_n=int_(pi/4)^(pi/2) (tanx)^-n dx(ngt1)`, then `I_n+I_(n+2)=` (A) `1/(n-1)` (B) `1/(n+1)` (C) `-1/(n+1)` (D) `1/n-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If I_n=int_0^(pi/4) tan^nx then lim_(nrarroo)n(I_n+I_(n-2)) equals (A) 1/2 (B) 1 (C) oo (D) 0

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,(n>1 and is an integer),then I_(n)+I_(n-2)=(1)/(n+1)I_(n)+I_(n-2)=(1)/(n-1)I_(2)+I_(4),I_(4)+I_(6),..., are in H.P.(1)/(2(n+1))