Home
Class 12
MATHS
If int0^ooe^(-x^2) dx=(sqrtpi)/2 , then...

If `int_0^ooe^(-x^2) dx=(sqrtpi)/2 `, then `int_0^ooe^(-ax^2) dx ` where ` a gt 0` is: (A) `(sqrtpi)/2` (B) `(sqrtpi)/(2a)` (C) `2(sqrtpi)/a` (D) `1/2(sqrt(pi/a))`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then

If int_(0)^(oo)e^(-x^(2))dx=(sqrt(pi))/(2), then int_(0)^(oo)e^(-ax^(2))dx where a>0 is: (A)(sqrt(pi))/(2) (B) (sqrt(pi))/(2a)(C)2(sqrt(pi))/(a) (D) (1)/(2)(sqrt((pi)/(a)))

If int_(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int_(0)^(oo) e^(-ax^(2)) dx, a gt0 , s

If int_ (0)^(oo) e^(-x^(2)) dx = (sqrt (pi))/(2), and int_ (0)^(oo) e^(-ax^(2) ) dx, a> 0 is (i) (sqrt (pi))/(2) (ii) (sqrt (pi))/(2a) (iii) 2 (sqrt (pi))/(a) (iv) (1)/(2) sqrt ((pi)/(a))

int_0^pi (cos^2x)dx ,

int_0^(pi/2) sin x dx

If int_0^1 xe^(x^2) dx=k int_0^1 e^(x^2) dx , then (A) kgt1 (B) 0ltklt1 (C) k=1 (D) none of these

int_0^(sqrt(2)) [x^2] dx is equal to (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

The value of the integral int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx" , where a gt 0 , is - (A) pi (B) api (C) pi/2 (D) 2pi