Home
Class 12
MATHS
Lt(nrarroo) sum(r=1)^(6n) 1/(n+r)= (A) l...

`Lt_(nrarroo) sum_(r=1)^(6n) 1/(n+r)=` (A) `log6` (B) `log7` (C) `log5` (D) `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) sum_(r=1)^n 1/n e^(r/n) is (A) 1-e (B) e-1 (C) e (D) e+1

sum_(n=1)^(n)(1)/(log_(2)(a))

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

sum_(r= 2)^(43) (1)/(log_(r)n) =

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

Given that lim_(nto oo) sum_(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1)/(2)) , lim_(n to oo) (1)/(n^k)[(n+1)^k(n+2)^k.....(n+n)^k]^(1//n) , is

Evaluate lim_ (n rarr oo) (1) / (n) sum_ (r = n + 1) ^ (2n) log_ (e) (1+ (r) / (n))

Show that sum_(r=2)^(43) frac{1}{log_(r)n} = log_n (43) !