Home
Class 12
MATHS
Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If...

Let `d/(dx)F(x)=((e^(sinx))/x),x > 0.` If `int_1^4 3/x e^s in x^3dx=F(k)-F(1),` then one of the possible values of `k ,` is: 15 (b) 16 (c) 63 (d) 64

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (d)/(dx)F(x)=((e^( sin x))/(x)),x>0. If int_(1)^(4)(3)/(x)e^(sin(x^(3)))dx=F(k)-F(1), then one of the possible values of k, is: (a)15 (b) 16(cc)63 (d) 64

Let (d)/(dx)(F(x))=(e^(sin x))/(x),x>0. If int_(1)^(4)2(e^(sin(x^(2))))/(x)dx=F(k)-F(1), then possible value of k is:

int[(d)/(dx)f(x)]dx=

Theorem: (d)/(dx)(int f(x)dx=f(x)

If f(x)=x+1, then write the value of (d)/(dx)(fof)(x)