Home
Class 12
MATHS
I10=int0^(pi/2)x^(10)sinx dx then I10+90...

`I_10=int_0^(pi/2)x^(10)sinx dx` then `I_10+90I_8` is (A) `10(pi/2)^6` (B) `10(pi/2)^9` (C) `10(pi/2)^8` (D) `10(pi/2)^7`

Promotional Banner

Similar Questions

Explore conceptually related problems

I_(10)=int_(0)^((pi)/(2))x^(10)sin xdx then I_(10)+90I_(8) is (A)10((pi)/(2))^(6)(B)10((pi)/(2))^(9)(C)10((pi)/(2))^(8)(D)10((pi)/(2))^(7)

int_(0)^(10 pi)|sin x|dx is

If I_n=int_0^(pi/2) x^n sinx dx , then [I_4+12I_2] is equal to (A) 4pi (B) 3(pi/2)^3 (C) (pi/2)^2 (D) 4(pi/2)^3

If u_(n)=int_(0)^((pi)/(2))x^(n)sin xdx then u_(10)+90u_(8) is equal to

If I_(n)=int_(0)^((pi)/(4))sec^(n)dx then I_(10)-(8)/(9)I_(8)=

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

int_pi^(10pi) |sinx|dx is equal to (A) 20 (B) 8 (C) 10 (D) 18

If I=int_(-pi)^pi e^(sinx)/(e^(sinx)+e^(-sinx))dx , then I equals (A) pi/2 (B) 2pi (C) pi (D) pi/4