Home
Class 12
MATHS
If f(x)={(e^(cosx)sinx, |x|le2),(2, othe...

If `f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):}` then `int_-2^3f(x)dx=` (A) `0` (B) `1` (C) `2` (D) `3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={e^(cos x)sin x for |x|<=2) and 2, other wise,Then int_(-2)^(3)f(x)dx=0

f(x) = {(1-2x", for " x le0),(1+2x", for "xgt0):} then int_(-1) ^(1) f(x) dx=

[ If f(x)=|x|+|x-1|, then int_(0)^(2)f(x)dx equals- [ (A) 3, (B) 2, (C) 0, (D) -1]]

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)

If f(x)=sin x-x, then int_(-2 pi)^(2 pi)|f^(-1)(x)|dx= (A) pi^(2)(B)2 pi^(2)(C)3 pi^(2)(D)4 pi^(2)

If f(0)=1,f(2)=3,f'(2)=5 and f'(0) is finite,then int_(0)^(1)xf''(2x)dx is equal to (A) zero (B) 1(C)2(D) none of these

if f(x)=|[cosx,1,0],[1,2cosx,1],[0,1,2cosx]| then int_0^(pi/2) f(x)dx is equal to (A) 1/4 (B) -1/3 (C) 1/2 (D) 1