Home
Class 12
MATHS
int-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B...

`int_-pi^(3pi) cot^-1(cotx)dx=` (A) `pi^2` (B) `2pi^2` (C) `3pi^2` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi cos2xlogsinxdx= (A) pi (B) -pi/2 (C) pi/2 (D) none of these

int_(-pi)^(5pi)cot^(-1)(cotx)dx equals

int_0^pi dx/(1+10^(cosx))+int_(-1)^1 log((2-x)/(2+x))dx= (A) pi/2 (B) -pi (C) 0 (D) none of these

int_(pi/4)^( pi/3)cot^(2)xdx=?

int_(0)^(pi//2) log (cotx ) dx=

int_0^pi (sin((n+1)/2)x)/sinxdx= (A) 0 (B) pi/2 (C) pi (D) none of these

int_-(pi/3)^(pi/3) (x^3cosx)/sin^2xdx= (A) 0 (B) 1 (C) -1 (D) none of these

int_-1^1 sin^-1(x/(1+x^2))dx= (A) pi/4 (B) pi/2 (C) pi (D) 0

If f(x)=sin x-x, then int_(-2 pi)^(2 pi)|f^(-1)(x)|dx= (A) pi^(2)(B)2 pi^(2)(C)3 pi^(2)(D)4 pi^(2)

The value of int_0^(log5) (e^xsqrt(e^x-1))/(e^x+3)dx is (A) 3+2pi (B) 4-pi (C) 2+pi (D) none of these