Home
Class 12
MATHS
The value of the integral int0^pi (xdx)/...

The value of the integral `int_0^pi (xdx)/(1+cosalphasinx),0ltaltpi` is (A) `(pia)/sinalpha` (B) `(pia)/(1+sinalpha)` (C) `(pia)/cosalpha` (D) `(pia)/(1+cosalpha)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt alpha lt pi , is

Evaluate int_(0)^(pi)(xdx)/(1+cosalphasinx),0ltalphaltpi .

Integrate: int_0^1 2^xdx

Evaluate the following integral: int_0^pix/(1+cosalphas in x)dx

The value of the integral int_-pi^pi (1-x^2)sinxcos^2xdx is (A) 0 (B) pi-pi^3/3 (C) 2pi-pi^3 (D) pi/2-2pi^3

If intsinx/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+C , then value of (A,B) is (A) (-sinalpha,cosalpha) (B) (-cosalpha,sinalpha) (C) (sinalpha,cosalpha) (D) (cosalpha,sinalpha)

If (2sinalpha)/({1+cosalpha+sinalpha})=y , then ({1-cosalpha+sinalpha})/(1+sinalpha) =

If cotalpha=(15)/(8) , then ((2+2sinalpha)(1-sinalpha))/((1+cosalpha)(2-2cosalpha))=?

(a+2)sinalpha(2a-1)cosalpha=(2a+1)if tanalpha is