Home
Class 12
MATHS
Let f be a function defined by f(x)=4^x/...

Let `f` be a function defined by `f(x)=4^x/(4^x+2)``I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx` and `I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx` where `2a-1gt0` then `I_1:I_2` is (A) `2` (B) `k` (C) `1/2` (D) `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^x/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then I_2/I_1 = (A) -1 (B) -3 (C) 2 (D) 1

If f(x) =(e^(2))/(1+e^(x)),I_(1)=int_(f(-a))^(f(a)) xg{x(1-x)}dx and I_(2)=int_(f(-a))^(-f(-a)) g{x(1-x)}dx , where g is not identify function. Then the value of I_(2)//I_(1) , is

f(x)=(e^(x))/(1+e^(x)),I_(1)=int(f(-a))^(f(a))xg(a(1-x)dx, and I_(2)=int_(f(-a))^(f(a))g(x(1-x))dx then the value of (I_(2))/(I_(1)) is (a)-1(b)-2(c)2(d)1g(x(1-x))dx

Let f(x) be a function defined by f(x)=int_(1)^(x)x(x^(2)-3x+2)dx,1<=x<=4 Then,the

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is

Let f be a positive function.Let I_(1)=int_(1-k)^(k)xf([x(1-x)])dxI_(2)=int_(1-k)^(k)f[x(1-x)]dx, where 2k-1>0. Then (I_(1))/(I_(2))is 2(b) k(c)(1)/(2) (d) 1

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then