Home
Class 12
MATHS
The value of sum(n=1)^1000 int(n-1)^n e^...

The value of `sum_(n=1)^1000 int_(n-1)^n e^(x-[x])dx`, where `[x]` is the greatest integer function, is (A) `(e^1000-1)/1000` (B) `(e-1)/1000` (C) `(e^1000-1)/(e-1)` (D) `1000(e-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^100 int_(n-1)^n e^(x-[x])dx =

int_(0)^(1000)e^(x-[x])dx

The value of int_(-1)^(1)[|x|](1)/(1+e^(-(1)/(x)))dx where [.] denotes the greatest integer function is

Evaluate sum_(n=1)^(1000)int_(n-1)^(n)|cos2pix|dx

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

Evaluate int_(1)^(a)x.a^(-[log_(e)x])dx,(agt1) .Here [.] represents the greatest integer function.

int_(-1)^(1)(e^(x)-e^(-x))dx=

The limit of sum_(n=1)^(1000)(-1)^(n)x^(n) as x rarroo