Home
Class 12
MATHS
The value of the integral int0^(100pi) s...

The value of the integral `int_0^(100pi) sqrt(1-cosx)dx` is equal to (A) `300sqrt(2)` (B) `200sqrt(2)` (C) `400sqrt(2)` (D) `500sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(100pi) sqrt(1-cos2x)" d"x is

int_0^(pi/2) sqrt(cosx)sinxdx

int_(0)^(pi//2)sqrt(1+cosx)dx

int_0^(sqrt(2)) [x^2] dx is equal to (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

Find the value of the following: int_0^(pi/2) sqrt(1+cosx)dx

Find the value of the following: int_0^(pi/2) sqrt(1+cosx)dx

The value of the integral int_(-pi//2)^(pi//2) sqrt((1+cos^(2)x)/(2))dx is

int_0^(pi/2) cosx/sqrt(1+sinx)dx

The value of the integral int_(0)^(400pi) sqrt(1-cos2x)dx , is Asqrt(2) . then find the value of A .