Home
Class 12
MATHS
If I=int0^1 (xdx)/(8+x^3) then the small...

If `I=int_0^1 (xdx)/(8+x^3)` then the smallest interval in which `I` lies is (A) `(0,1/8)` (B) `(0,1/9)` (C) `(0,1/10)` (D) `(0,1/7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I= int_(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I less is

If I=int_(0)^(1)(1)/(1+x^(8))dx then:

The matrix of the transformation reflection in the line x+y=0 is (A) [(-1,0),(0,-1)] (B) [(1,0),(0,-1)] (C) [(0,1),(1,0)] (D) [(0,-1),(-1,0)]

If a!=0 and log_(x)(a^(2)+1)<0 then x lies in the interval (A)(0,oo)(B)(0,1)(C)(0,a)(D) none of these

If A=[(0,1),(1,0)] then A^4 is (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

int_(0)^(1)(x^(7))/(1+x^(8))dx

If I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, where n is a positive integer,then I_(10)+I_(8) is equal to (A)(1)/(9)(B)(1)/(8) (C) (1)/(7)(D)9

The smallest interval [a,b] such that int_0^(1) (1)/(sqrt(1+x^(4)))dx in [a,b] , is

If A=[(1,0),(0,1)] then A^4= (A) [(1,0),(0,1)] (B) [(1,1),(0,10)] (C) [(0,0),(1,1)] (D) [(0,1),(1,0)]

The function f(x)=x^(x) decreases on the interval (a) (0,e)(b)(0,1)(c)(0,1/e)(d)(1/e,e)