Home
Class 12
MATHS
The value of int0^([x]) 2^x/2^([x])dx, w...

The value of `int_0^([x]) 2^x/2^([x])dx`, where `[x]` denotes the greatest integer function is (A) `[x]log2` (B) `[x]/log2` (C) `1/2[x]/log2` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(2)[x^(2)-x+1]dx (where,[*] denotes the greatest integer function) is equal to

The value of int_(0)^([x])(2^(x))/(2^([x]))dx is equal to (where,[.] denotes the greatest integer function)

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(1)^(2)(x^([x^(2)])+[x^(2)]^(x))dx, where [.] denotes the greatest integer function,is equal to

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

The value of int_(e)^(pi^(2))[log_(pi)x]d(log_(e)x) (where [.] denotes greatest integer function) is

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :