Home
Class 12
MATHS
int0^1 (tan^-1x)/xdx-1/2int0^(pi/2) t/si...

`int_0^1 (tan^-1x)/xdx-1/2int_0^(pi/2) t/sint dt` has the value (A) `-1` (B) `1` (C) `2` (D) `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^1 tan^-1xdx

int_(0)^(1)x tan^(-1)xdx=

Show that: int_0^1 tan^-1x/xdx=1/2int_0^(pi/2) ycosecy dy

int_(0)^(1)x^(2)tan^(-1)xdx

int_0^1 x^2e^xdx

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

Let a=int_0^(pi/2) sinx/xdx , then (A) 0ltalt1 (B) agt2 (C) 1ltaltpi/2 (D) none of these

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is