Home
Class 12
MATHS
If a, b (altb) be the points of disconti...

If `a, b (altb)` be the points of discontinuity of function `f(f(f(x)))`, where `f(x)=1/(1-x),x!=1`, then `int_a^b f(x)/(f(x)+f(1-x))dx=` (A) `0` (B) `1/2` (C) `1` (D) `2`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(1)/(1-x) points of discontinuity of the composite function f(f(x)) are:

The number of points of discontinuity of g(x)=f(f(x)) where f(x) is defined as,f(x)={[1+x,0 2

If alpha, beta (where alpha lt beta ) are the points of discontinuity of the function g(x) = f(f(f(x))), where f(x) = (1)/(1-x). Then, The points of discontinuity of g(x) is

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

Given f(x)=(1)/(x-1) .Find the points of discontinuity of the composite function f(f(x)).

Given f(x)=(1)/(x-1) .Find the points of discontinuity of the composite function f(f(x)).

[ If f(x)=|x|+|x-1|, then int_(0)^(2)f(x)dx equals- [ (A) 3, (B) 2, (C) 0, (D) -1]]

If f(x)+f(3-x)=0 ,then int_(0)^(3)1/(1+2^(f(x)))dx=

If f(x)=(1)/(1-x), then the set of points discontinuity of the function f(f(f(x))) is {1} (b) {0,1} (c) {-1,1} (d) none of these