Home
Class 12
MATHS
The value of int-1^3 [tan^-1(x/(x^2+1))+...

The value of `int_-1^3 [tan^-1(x/(x^2+1))+tan^-1((x^2+1)/x)]dx=` (A) `pi/2` (B) `2pi` (C) `pi` (D) `pi/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_-1^1 sin^-1(x/(1+x^2))dx= (A) pi/4 (B) pi/2 (C) pi (D) 0

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)((a)/(x))+tan^(-1)((b)/(x))=(pi)/(2) then x=

int _ (-2)^(1) (tan^(-1) ((x)/(x^(2) +1))+tan^(-1) ((x^(2) +1)/( x))) dx is (i) (pi)/(2) (ii)-(pi)/(2) (iii) pi (iv) -pi

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is (A) 1 (B) 0(C)-1(D)(pi)/(4)

The value of int_(-pi/2)^(pi/2) (sin^2x)/(1+2^x)dx is: (A) pi (B) pi/2 (C) 4pi (D) pi/4

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is