Answer
Step by step text solution for int_0^(2pi) e^(sin^2nx) tannxdx= (A) 1 (B) pi (C) 2pi (D) 0 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.
|
Similar Questions
Explore conceptually related problems
Knowledge Check
Similar Questions
Explore conceptually related problems
Recommended Questions
- int0^(2pi) e^(sin^2nx) tannxdx= (A) 1 (B) pi (C) 2pi (D) 0
04:31
|
Playing Now - If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a)g^(prime)...
08:30
|
Play - If theta=sin^(-1){sin(-600^@)} , then one of the possible values of ...
01:40
|
Play - Evaluate: int0^(2pi)1/(1+e^(sin x))dx
02:45
|
Play - The value of int0^(2pi)sqrt(1+sin (x/2)dx is 0 b. 4 c. 2 d. 8
03:55
|
Play - int0^(pi//2)sin2xlogtanx\ dx\ is equal to pi//2 b. pi c. 0 d. 2pi
02:27
|
Play - int0^(2pi) e^(sin^2nx) tannxdx= (A) 1 (B) pi (C) 2pi (D) 0
04:31
|
Play - If int0^pi x f(sinx) dx=A int0^(pi/2) f(sinx)dx, then A is (A) pi/2 (B...
05:00
|
Play - sin^(-1)x+cos^(-1)x,x in[-1,1]= (A) 0 (B) pi/2 (C) pi (D) 2pi
02:53
|
Play