Home
Class 12
MATHS
int0^(2pi) e^(sin^2nx) tannxdx= (A) 1 (B...

`int_0^(2pi) e^(sin^2nx) tannxdx=` (A) `1` (B) `pi` (C) `2pi` (D) `0`

Answer

Step by step text solution for int_0^(2pi) e^(sin^2nx) tannxdx= (A) 1 (B) pi (C) 2pi (D) 0 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int_0^(pi/2)sin^2xdx =

int_0^pi (sin((n+1)/2)x)/sinxdx= (A) 0 (B) pi/2 (C) pi (D) none of these

Knowledge Check

  • int_(0)^(2pi)e^(sin^(2)nx) . tan nx dx =

    A
    0
    B
    `pi`
    C
    1
    D
    2
  • Similar Questions

    Explore conceptually related problems

    The value of int_(-pi/2)^(pi/2) (sin^2x)/(1+2^x)dx is: (A) pi (B) pi/2 (C) 4pi (D) pi/4

    If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

    sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

    int_0^pi cos2xlogsinxdx= (A) pi (B) -pi/2 (C) pi/2 (D) none of these

    int_-1^1 sin^-1(x/(1+x^2))dx= (A) pi/4 (B) pi/2 (C) pi (D) 0

    int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

    The value of the integral int_-pi^pi (1-x^2)sinxcos^2xdx is (A) 0 (B) pi-pi^3/3 (C) 2pi-pi^3 (D) pi/2-2pi^3