Home
Class 12
MATHS
inta^b |x|/xdx, altb, is equal to (A) b-...

`int_a^b |x|/xdx, altb`, is equal to (A) `b-a` (B) `b+a` (C) `|b|-|a|` (D) `|b|+|a|`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_a^b logx/xdx

int _(a)^(b) (|x|)/x dx , a lt 0 lt b, is equal to

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c^2) then thhe value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

int_(a)^(b) sqrt((x-a)(b-x)) dx, (b gt a) is equal to

If f(a+b-x)=f(x) , then int_a^b x f(x)dx is equal to (A) (a-b)/2int_a^b f(a+b-x)dx (B) (a+b)/2int_a^b f(b-x)dx (C) (a+b)/2int_a^b f(x)dx (D) (b-a)/2int_a^b f(x)dx

If f(a+b-x)=f(x) , then inta bf(x)dx is equal to (A) (a+b)/2inta bf(b-x)dx (B) (a+b)/2inta bf(b+x)dx (C) (b-a)/2inta bf(x)dx (D) (a+b)/2inta bf(x)dx

If A and B are two matrices such that AB=A, BA=B, then A^25 is equal to (A) A^-1 (B) A (C) B^-1 (D) B

int_(a)^(b-a)f''(x+a)dx equals (a) f(b-a)-f(a) " " (b) f(b)-f(2a) (c) f'(b)-f'(2a) " " (d) f'(b-a)-f'(2a)

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

int_(a rarr b)cos xdx