Home
Class 12
MATHS
If f(x) and g(x) be continuous functions...

If `f(x)` and `g(x)` be continuous functions in `[0,a]` such that `f(x)=f(a-x),g(x)+g(a-x)=2` and `int_0^a f(x)dx=k`, then `int_0^a f(x)g(x)dx=` (A) `0` (B) `k` (C) `2k` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f and g are continuous functions on [0,a] such that f(x)=f(a-x) and g(x)+g(a-x)=2 then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx

If f(x)=f(4-x), g(x)+g(4-x)=3 and int_(0)^(4)f(x)dx=2 , then : int_(0)^(4)f(x)g(x)dx=

Let f and g be continuous functions on [ 0 , a] such that f(x)=f(x)=f(a-x)andg(x)+g(a-x)=4 , then int_(0)^(a) f(x)g(x) dx is equal to

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If f(x) and g(x) are continuous functions satisfying f(x)=f(a-x) and g(x)+g(a-x)=2 then what is int_0^a f(x) g(x) dx equal to

If fandg are continuous function on [0,a] satisfying f(x)=f(a-x)andg(x)+g(a-x)=2 then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=