Home
Class 12
MATHS
The value of int1^a[x]f^(prime)(x)dxf^(p...

The value of `int_1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n d[x]` denotes the greatest integer not exceeding `x ,` is `af(a)-{f(1)f(2)++f([a])}` `[a]f(a)-{f(1)+f(2)++f([a])}` `[a]f(a)-{f(1)+f(2)++fA}` `af([a])-{f(1)+f(2)++fA}`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,where a >1, and [x] denotes the greatest integer not exceeding x, is (A) af(a)-{f(1)f(2)+.....+f([a])} (B) [a]f(a)-{f(1)+f(2)+......+f([a])} (C) [a]f(a)-{f(1)+f(2)+.......+fA} (D) af([a])-{f(1)+f(2)+......+fA}

The value of int_(-10)^(10)[{f(f(x)}xx{f(f((1)/(x))}]dx , where f(x)=(1-x)/(1+x)

If f:R rarr R is defined by f(x)=x-[x]-(1)/(2). for x in R, where [x]is the greatest integer exceeding x, then {x in R:f(x)=(1)/(2)}=

Let f(x)=x+e^(x), thenvalue of int_(1)^(1+e)2f^(-1)(x)dx is equal to (where f^(-1)(x) denotes inverse of f(x))

f(x)=(x)/(x-1) then (f(a))/(f(a+1)) is equal to a.f(-a) b.f(1/a) c.f(a^(2)) d.f (-(a)/(a-1))

If f(x)= int_1^(x^3)1/(1+lnt)dt"f o r xgeq1,then f^(prime)(2)=

Find f(f(f(f(f(2)))))) if f(x)=(x+1)/(x-1),x ne 1