Home
Class 12
MATHS
int0^(2npi) {|sinx|-|1/2sinx|}dx= (A) n ...

`int_0^(2npi) {|sinx|-|1/2sinx|}dx=` (A) `n` (B) `2n` (C) `-2n` (D) `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

The value of I=int_0^(pi/2) (sinx+cosx)^2/sqrt(1+sin2x)dx is (A) 2 (B) 1 (C) 0 (D) 3

Let a=int_0^(pi/2) sinx/xdx , then (A) 0ltalt1 (B) agt2 (C) 1ltaltpi/2 (D) none of these

Evaluate : int_(-pi/2)^( pi/2 ) | sinx | dx = ( a ) -2 ( b ) 2 ( c ) -1 ( d ) 1

Evaluate : int_(-pi/2)^( pi/2 ) | sinx | dx = ( a ) -2 ( b ) 2 ( c ) -1 ( d ) 1

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

int_-1^1 (sinx+x^2)/(3-|x|)dx= (A) 0 (B) 2int_0^1 sinx/(3-|x|)dx (C) 2int_0^1 x^2/(3-|x|)dx (D) 2int_0^1 (sinx+x^2)/(3-|x|)dx

Find int_0^(pi/2) cosx/((1+sinx)(2+sinx))dx